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HEAT AND MASS TRANSFER IN HYDROGEN SORPTION--DESORPTION 

IN METAL-HYDRIDE POWER-PLANT COMPONENTS 

V. M. Liventsov and A. V. Kuznetsov UDC 536.242 

A mathematical model which describes the dynamics of hydride-accumulator opera- 
tion, taking account of the laws of heat and mass transfer and the reaction ki- 
netics of hydrogen sorption--desorption, is developed. Estimates of the accu- 
racy of the approximate analytical solutions are given. A generalization of the 
quasi-steady method of solving the Stefan problem is obtained. 

The hydrides of intermetallide compounds (IMC) -- for example, LaNis, FeTi, etc. -- are 
capable of reversible sorption and desorption of a large quantity of hydrogen. To optimize 
the operating conditions and construction of hydride accumulators, it is expedient to use 
mathematical modeling. In [i], a mathematical model of heat transfer in the hydride layer 
was proposed, and an approximate analytical solution was obtained under the assumption that 
sorption--desorption occurs at constant temperature (frontal model). In [2], a model taking 
account of heat and mass transfer was proposed; in [3], a model also taking account of the 
kinetics of hydrogen sorption--desorption was considered. 

The mathematical model here outlined is obtained on the basis of the laws of mass and 
energy conservation in differential form [4] and the equations of reaction kinetics, and is 
more general than those considered previously. 

The following assumptions are made in its formulation: 

i) heat transfer occurs on account of heat conduction of the hydride and convection in 
the filtration of free hydrogen in the hydride pores; 

2) the filtration of hydrogen occurs in viscous conditions; 

3) the change in hydrogen content in the hydride is due to two factors: the sorption--de- 
sorption reaction and the diffusion of bound hydrogen in the hydride. 

The mathematical model includes the following equations: 

mass conservation of free hydrogen (continuity) taking account of the equation of state 
of an ideal gas for free hydrogen 

' ( ) MH, ~h (..~:. --  div (D~ grad • ; (1) MH, a t HpH~ ~ H3 PH, gradpH, 
Rgas 0x ~ ' - ~ )  = hd~ediv (1 --  n) z ~H,T 2 M h 

energy conservat ion (heat  t r a n s f e r )  

( ,ph._[_CH ' ) .OPh{d• (2) ~gas MH' H Tput OTo~ = div (~hgrad T) -]- 2Mh ~ dx 

--div(D. grad~)) q- ~hd~e MHo c~, H~ P~ (gradpH,, gradT); 
, Rgas (1 - -  H )  z ~H~I 

the k ine t i c  equation of hydrogen sorp t ion-desorp t ion  

(•176 ~). (3) 
, RgasT Pd(T, • 
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With stronger assumptions, the model in Eqs. (1)-(3) reduces to the models proposed 

in [1-3]. 

Numerical solution of Eqs. (i)i(3) is undertaken by a purely implicit scheme with itera- 
tions [5]. 

For engineering applications and for estimates of the influence of various factors on 
the sorptional conditions of an accumulator, it is important to find analytical solutions of 
this problem with reasonable simplifying assumptions. Below, so as to be specific, sorptional 
conditions are considered (desorption conditions are considered analogously). According to 
[1, 2], the kinetics of the chemical reaction is not the limiting stage for LaNis; therefore, 
the following assumption is made below: 

4) there is local equilibrium at each point between the free and bound hydrogen. 

In this case, Eq. (3) takes the form 

p=pd(T, • o r  T = T  d (P, • (4 )  

Equation (4) specifies the isotherms (isobars) of IMC equilibrium. 

The basic cases permitting analytical solution are now considered. 

Problem i 

As shown in [i], the equilibrium isotherms for LaNi s may be schematized up to isobaric 
areas covering the whole sorptional capacity of the IMC. Under this assumption, the sorption 
reaction will proceed over a front and not in a zone of finite size (see problem 2). The 
initial temperature of the IMC layer T o may be assumed to be the equilibrium temperature of 
sorption, since with rapid stabilization of the working hydrogen pressure p = P0, there is 
adiabatic heating of the IMC layer with partial sorption of hydrogen up to an amount <0 deter- 
mined from the thermal balance. 

The pressure difference over the cross section of the IMC layer (see problem 3) and the 
heat transfer in hydrogen filtration (contributing no more than 5% to the total heat transfer, 
according to our estimates) are neglected. 

Thus, on making the following additional assumptions: 

5) a frontal model; 

6) the process occurs without hindrance of the hydrogen filtration; 

7) convective heat transfer is small in comparison with conductive heat transfer, 

the classical Stefan problem is obtained. The time of accumulator charging with boundary 
conditions (BC) of the first kind (constant temperature is maintained at the accumulator sur- 
face) and with BC of the third kind (heat transfer occurs in the coolant) is of interest here. 

Since heat transfer in a hydride accumulator is not highly intensive [I], it is expedient 
to use an approximate quasi-steady method of solving the Stefan problem developed in [6, 7], 
according to which the temperature field is determined from the solution of the steady 
elliptical equation corresponding to Eq. (2). This method is developed for bodies of simple 
configuration: an infinite plate, infinite cylinder, and sphere. Its generalization for an 
IMC layer of arbitrary configuration is now obtained. 

Assertion i. The differential equation describing the steady temperature distribution may 
be written in the form 

#Ts(v)+2 dT ds _o,  (5) 
dv z dv dv 

where s(v) is the area of the surface bounding volume v. 

Proof. With a steady temperature distribution, the heat flux passing through the surface 
s(v) is equal to the heat flux passing through the surface s(v + dv), where dv is the change 
in the volume bounded by surface s 

<q (v + ev) >s(v+ev) =<q(v)>s(v). 
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Expanding q and s in Taylor series and neglecting terms of order o(dv), it follows that 

< q (v) > + 

o r  

ds d (q------~>s(v) = O. ( 6 )  < q (v) > ~ + & 

Since the mean variation in the coordinate of a surface point over the normal to the sur- 
face s with change in volume by' dv is <dn> = dv/s(v), the mean -- over surface s -- heat flux 
density is as follows according to the Fourier law 

dT dT 
<q> = - - z - -  ~ s(v). (7)  

<dn) dv 

S u b s t i t u t i o n  o f  Eq. (7)  i n t o  Eq. (6)  y i e l d s  Eq. ( 5 ) .  

A s s e r t i o n  2. The t ime o f  accumula to r  cha rg ing  wi th  BC of  t he  f i r s t  k ind  Tsu r = T c o  i s  
de t e rmine d  from t he  formula  

eh = %h(Tp--Tco) I, 1---. dvp, (8)  

where Vp i s  t he  volume of  h y d r i d e  bounded by t he  p h a s e - t r a n s i t i o n  s u r f a c e .  

P r o o f .  The a c c u m u l a t o r - c h a r g i n g  t ime i s  de t e rmined  from the  t he rma l  ba l ance  ( t h e  h e a t  
l i b e r a t e d  in t he  cou r se  o f  chemica l  r e a c t i o n  i s  equa l  to  the  hea t  e x t r a c t e d )  

V 

~ e h _ ~ E  ( dvp (9)  
6 <q>s 

Expansion of <q> using Eq. (7) gives 

E v dvp 
Zeh Zh ~ dT ( 10 ) ~-o())  s~ (~p). 

To determine dT/dv in Eq. (10), Eq. (5) is integrated twice 

v dv 

O 

The c o n s t a n t s  o f  i n t e g r a t i o n  Cz and C 2 a r e  found from t h e  c o n d i t i o n s  T ( v p ) = T p ,  T(V) = Tea 

Tp --  rco ~f dv 
r (v) = v dv . s z (v----~ "4c Tee, 

f s~ (v) 
vtp 

and hence 

_T_T (v)= - ~ - - T ~ o  t (11) 
dv dv s2 (v) f 

J s ~ (v) Vp 

S u b s t i t u t i o n  o f  Eq. (11)  i n t o  Eq. (10) g ive s  Eq. ( 8 ) .  

A s s e r t i o n  3. The a c c u m u l a t o r - c h a r g i n g  t ime wi th  BC of  the  t h i r d  k ind qsur  = a (Tsu r  - -Tee )  
i s  de t e rmined  from t he  fo rmula  
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I I I  1 ' 

Xch = ~eh + Xch, (12) 

where TIh i s  de te rmined  from Eq. (8)  and ~eh i s  t he  charg ing  t ime wi th  c o n v e c t i v e  hea t  
transfer from the surface under the assumption that the temperature difference over the 
hydride layer is negligibly small (physically, this is realized when ~ is small; in this 
case, Tsu r = Tp) and the heat flux density from the accumulator surface is constant: qsur = 

~(Tp -- Tee). In this case 

E V 
Tch = (13) 

P r o o f ,  I t  f o l l o w s  from Eq. (9) f o r  the  accumula to r  charg ing  t i m e ,  s i n c e  the  i n t e g r a l  i s  
additive, that, to prove Eq. (12), it is sufficient to prove that 

but 

I ] 4 1 (14) 
< q I , i>  < ql> < q,> 

< q' > = x < I ~ / >  = ~" < -~n > (~  --%~ 
(15) 

where O = T/(Tp-Tsu r) is the dimensionless temperature; and 

<q'> = ~ ( r p - t o ) ;  
<qnz> = tz (T sur-Tco). 

(16)  

(17) 

On the other hand 

< q t t, > = k . / I  0 T I ~ ' I \  = X./'I d0 l'k (T - -  Tsur). 
N - o h - I  / " I  a~ I / v 

( 1 7 ' )  

Here, the similarity of the temperature fields of problems with boundary conditions of the 
first and third kind is taken into account 

0 -- TI -- Till , 
Tp --Tee Tp, - -  Tsu r 

which follows from the fact that T I and TIII satisfy the Laplace equation &T = 0, which re- 
mains valid on multiplying T by a constant. 

Eliminating Tsu r from Eqs. (17) and (17'), it is found that 

~.h( J ~176 x. (~ 
< q , , l >  = "lan// '~ (18)  

Substitution of Eqs. (15), (16), and (18) into Eq. (14) completes the proof. 

In calculating an infinite plate, infinite cylinder, and sphere on the basis of Eqs. (8) 
and (12), the well-known formulas are obtained, confirming that this method is a generaliza- 
tion of the ordinary calculations using the quasi-steady method. 

Thus, for a plate 

! =  dl dlp ,= ; ( 1 9 )  
o -  2 

710 



"~c! 10-# 
3 

2 

1 

I I 

2 7 # L ,~.I0 z 

Fig. i. Dependence of the charging time of an accu- 
mulator with LaNi s on the characteristic dimensions 
(p = 12"i0 s Pa, Tco = 288 K): I) plate; 2) cylinder, 
BC of the first kind; 3) plate; 4) cylinder, BC of 
the third kind, a = i0 W/m2"K; 5) plate; 6) cylinder, 
BC of the third kind, ~ = 60 W/m2"K. 
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Fig. 2. Dependence of the charging time of an accu- 
mulator with LaNi 5 on the heat-transfer coefficient 
in coolant (p = 12.105 Pa, Tco= 288 K): i) plate; 
2) cylinder, L = R = 0.01 m; 3) plate; 4) cylinder, 
L = R = 0.025 m; 5) plate; 6) cylinder, L = R = 0.05m. 

for a cylinder 

o (2~r) z 4 

for a sphere 

Note that this method is also applicable for the calculation of ingot solidification 
times and in other cases where the approximate solution of the Stefan problem with BC of the 
first or third kind by a quasi-steady method is undertaken. 

The dependence of the accumulator charging time on the characteristic dimension -- for a 
plate, half its thickness; for a cylinder, the radius -- is a clearly expressed quadratic para- 
bola (Fig. i). The charging time of a cylindrical accumulator is half that of an accumulator 
in the form of a plate with R = L. 
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Fig. 3. Dependence of the ratios 6'/B and y /8  on the 
temperature difference for LaNi s when p = 5"10 s (i, 4), 
12"10 5 (2, 5), and 20-10 s (3, 6) Pa. 

The dependence of the accumulator charging time on the heat-transfer coefficient with 
BC of the third kind is shown in Fig. 2. It is evident that, at small ~ (for example, cooling 
by a gas flow), ~ch increases strongly. At large ~ (cooling by a liquid flow), the solution 
of the problem tends to the solution of a problem with BC of the first kind when Tsu r =Tco 
and further decrease in ~ch cannot occur. 

The only case in which problem 1 has an accurate analytical solution is the case of an 
infinite plate with a BC of the first kind. According to [6], it is found that the time de- 
pendence of front motion is given by the formula 

xp (x) =~fw, (20) 

where ~ is found from the transcendental equation 

kh(To-- Too ) exp ( - -  - -  ] = . ax- 

, 2Mh 

Hence, the oscillator charging time in this case is 

The quasi-steady method gives the same formulas for Xp(T) and ~ch, but according to 
Eqs. (8) and (19) 

l 

The dependence of  B ' /g  on t he  t e m p e r a t u r e  d i f f e r e n c e  T0-Tco  ( in  the  f r o n t a l  model ,  To = 
Tp) i s  shown in  F ig .  3. The e r r o r  o f  t h i s  approximate  method i s  l e s s  wi th  smal l  t e m p e r a t u r e  
d l f f e r e n c e s ,  when t he  t e m p e r a t u r e  f i e l d  i s  a b l e  to  r e l a x  to  t he  s t e a d y  s t a t e ;  w i th  i n c r e a s e  
in the temperature difference, the error of the method increases. As is evident, the error 
of the method is no more than 3Z for the given temperature differences. 

Problem 2 

Assumption 5 is weakened here: 

5') the equilibrium isotherm (isobar) is approximated not by a constant function, as in 
the frontal model but by a piecewise linear model. 

In this case, the sorption reaction occurs not over the front but in the IMC layer: in 
the region 0 < x < Xp, sorption ends; in the region Xp < x < L, it proceeds. The accu- 
mulator charging ends when x~(T) reaches L. To obtain an approximate analytical solution 
of this problem for an infinite plate with BC of the first kind, the accurate solution for a 
semiinfinite body is used [8]. 

~ )  = ? ~  (22)  
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Fig. 4. Dependence of the pressure at the phase-transi- 
tion front on the coordinate of the front (1-3) and dy- 
namics of front motion (I'-3') for LaNis, Tco= 288 K, 
dme = 4"i0 -G m: i, i') H = 0.15; 2, 2') 0.i; 3, 3') 
0.05; pp, Pa; Xp, m. 

where 7 = 2k~aah, and k is found from the transcendental equation 

exp (--k z) c (T* (Po) --Teo) 
err k 

l 
: C h T 

%f(T (• po) -- "r* (po)) 

i__ k2 Cef e• ) 
Ch 

Equation (22) is of the same form as Eq. (20), but 7 and B are found from different tran- 
scendental equations. The charging time may be found from Eq. (21) if B is replaced by 7. 

The ratio 7/$ (the dependence of 7/6 on the temperature difference is shown in Fig. 3) 
characterizes the influence of nonzero width of the sorption zone on the dynamics of accumu- 
lator charging. If it is close to unity, the sorption zone may be neglected and the frontal 
model of problem i is considered. It is evident that 7/6 is closer to unity for large differ- 
ences since intense processes are closer to frontal. For the given conditions, the maximum 
deviation of 7/8 from unity is no more than 25%. 

Note that the results of analyzing problem 2 agree with those of [9], where the influence 
of the nonzero sorption zone is investigated by numerical solution of the problem. 

Problem 3 

Retaining assumption 5, assumption 6 is discarded: the pressure difference over the cross 
section of the IMC layer is not neglected. The mathematical formulation of the problem will 
include two coupled equations: the heat-conduction and continuity (hydrogen-filtration) equa- 
tions. The case which is most unfavorable for filtration is considered: heat extraction and 
hydrogen supply occur on different sides of the infinite plane hydride layer. Solving the 
resulting system with BC of the first kind by the quasi-steady method considered here, an 
ordinary differential equation is obtained for the coordinate of the hydriding front Xp(T) ~ 

d'~ E Xp 

with the initial condition Xp(0) = +0, where the pressure at the hydriding front Pp is de- 
termined from the transcendental equation 
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Too -5 (T~Q -5 4q~) '/2 
- = T(p_ ,  Mmax) , 

2 v 

and 

cp = h I -t I - - I 1  XrF~ Ea s 2 ( l -- Xp ) 

The dependence of the pressure at the sorption front pp (minimum pressure in the IMC 
layer) on the front coordinate Xp and the dynamics of Xp(T) are shown in Fig. 4. It is 
evident that, at high porosity (curve I), the process occurs practically without hindrance 
of the filtration; the accumulator charging time here is practically the same as the time 
calculated from Eq. (8). At small porosity (curve 3), the hindrance of filtration is signi- 
ficant; the accumulator charging time is increased severalfold. The curve of Xp(T) has a 
point of inflection on passing from conditions with hindrance of the filtration Pp < P0 to 
conditions with no hindrance Pp = P0. Note that the dispersity of the hydride dme also 
has a strong influence on the filtration. 

Thus, a generalization of the quasi-steady method for approximate solution of Eqs. (I), 
(2), and (4) (problem i) has been developed and tested. The solution of problems 2 and 3 
permits the evaluation, for specific accumulator parameters, of the applicability of assump- 
tions 5 and 6, i.e., the possibility of using the frontal model without taking account of 
hindrance of hydrogen filtration. 

NOTATION 

M, molecular mass, kg/kmole; H, porosity, vol. fraction; p, pressure; Pa; T, temperature, 
K; <q>, surface-mean heat flux density, W/m2; T, time, sec; p, density, kg/m3; B, dynamic vis- 
cosity, Pa.sec; D, diffusion coefficient, m2/sec; ~, thermal conductivity, W/m.K; ~ = A/cp, 
thermal diffusivity, m2/sec; • content of bound hydrogen in hydride, katom H/kmoie IMC; Q, 
specific heat of hydriding, J/kmole H2; E = Qpg(• • heat liberated per m 3 hyride 
as a result of hydriding, J/m3; Rgas = 8314 J/kmole'K, universal gas constant; h, empirical 
filtration coefficient (h = 2.37.10 -3 for LaNi5 [i0]); 6, coefficient taking account of the 
deviation from thermal equilibrium in convective heat transfer between free hydrogen and 
hydride (at equilibrium, 8 = i); ~, heat-transfer coefficient in coolant, W/m2"K; T*(p0) = 
T(P0, <max), temperature of upper discontinuity in isobar in piecewise-linear approximation, 
K; K, rate constant, sec-1; e, activation energy, J/kmole; (,), scalar product; x, Cartesian 
coordinate, m; r, current radius in cylindrical or spherical coordinates, m; L, half the 
plate thickness, m; R, radius of cylinder of sphere, m; V, hydride volume in accumulator, m3; 
dme, mean diameter of hydride particle, m. Subscripts: H2, free hydrogen in hydride pores; 
H, chemically bound hydrogen; h, hydride; 0, initial value (T = 0); co, coolant; p, phase, 
transition boundary; sur, value at accumulator surface; max, maximum value; d, value at equil- 
ibrium dissociation. 
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